SRA 2016 – Strategic Research Challenges

Design Methods, Tools, Virtual Engineering

Jürgen Niehaus, SafeTRANS

THE CHALLENGE

As always....

- Embedded Systems and Cyber-Physical Systems
 - are becomming more and more complex
 - New functionality
 - Networked systems
 - Higher level of automation/autonomy
 - interact with (or comprise) physical environment
 - therefore safety critical
 - therefore analysis / V&V methods and tools needed
 - Matching current (and future) ,complexity levels' of systems
 - beeing (cost-)efficient
 - » Large part of design costs go to V&V
 - make use of new technology (needing adapted/new (design/V&V/...methods&tools)
 - Multicore
 - new sensors
 - ...
- Therefore we need more/better/more cost-efficient Design Methods and Tools

These ,old' arguments are still valid

But with CPS, it get's worse ...

- Networked Systems
 - Security (resp. Security impact on Safety)
 - Cooperation, Coordination
 - of systems from different manufacturers
 - Handling uncertainty
 - Wrt. trustworthyness of ,external information'
- Increasing Level of Automation (up to Autonomy)
 - Explosive increase in possible system behaviour
 - The amount of testing needed to be even only ,reasonable sure' of system's correctness is prohibitive
 - Complex decision making
 - Self Learning?
 - How to analyze such systems at all?
 - Ethics?
 - Handling uncertainty
 - Oberservation of environment is often incomplete

... and worse

- Humans are integral part of the overall system
 - Human Machine Interaction
 - Human Machine Cooperation
 - Machine Adaptation to Human needs
- Long lifetime of systems
 - Need to cope with
 - New situations
 - new cooperations partners (with new capabilities)
 - new requirements
 - which were not even envisioned during design time...
 - (Also the other way around: Need to cope with legacy systems)

Another set of challanges: Changes in development processes

- Multi-diciplinary design teams
- Physically distributed design teams
- Organizationally distributed design teams

 ... spanning more than one company
- Changes in OEM Supplier relationships
 - From supplier chains to supplier nets
 - OEM not necessarily the (sole) integrator any more
- Need to adapt/enrich Design Methodology and have corresponding tool support

Yet another set of Challenges: Where worlds collide...

- Consumer Electronics and Assistance Systems
 - Part of the same system, but
 - Different lifecycles / lifetimes
 - Feature interaction? Impact on Safety (and Security)?
 - Different possibilities for Upgrades/Changes/Evolutions
 - Apps for Assistance Systems?
- Embedded Systems and Internet / Cloud
 - Reliability / Trustworthyness (of information)
 - Quality of Service (latency, accuracy,...)
 - Security (who gets in and who stays out...)

Overarching challenge

- How can we
 - design
 - do V&V for
- these kind of ,beasts'
- such, that requirements on
 - Safety (and Security)
 - Real-Time behaviour
 - Cost Efficiency
- are met

Same question as before, but for a (more or less) completely new type of systems.

HIGH LEVEL RESEARCH TOPICS

High level topics I

- Model based design, including
 - multi-domain, multi-dimensional , and multi-objective specification and modelling
 - across application domains
 - across engineering domains
 - across supply chain
 - support for heterogeneous models
 - support for re-use of models
 - models for certification
 - support for an integrated safety and security development process
- Multi-Objective Optimization
 - For heterogeneous models
 - with multiple objectives from different application and engineering domains
 - across the supply chain

High level topics II

- V&V Verification and validation methodology and tools
 - Including formal verification, simulation, testing,...
 - for complex, extendable, upgradable and evolvable Cyber-Physical Systems
 - including on-line validation/verification
 - supporting
 - Incremental analysis and certification
 - Integration of heterogeneous models
 - Model-/software-/Hardware/system-in-theloop simulation and testing
 - able to handle
 - new functionality
 - uncertainty stemming from incomplete environment observations ans different levels of trust placed in external information
 - The dynamic behaviour of CPS
 - to establish properties like
 - Safety
 - Security
 - Real-time behaviour and quality of service
 - ----
- Monitoring and Diagnosis in the field
 - Failure detection
 - Adaptation, fail-safe degradation
 - Self-Healing
 - Life-long ,learning'

High level topics III

- Human Aspects
 - Human Machine Interaction
 - Human Machine Cooperation
 - Machine Adaptation to Human needs
- Pushing Open, horizontal Standards
 - Interoperability
 - Communication, Cooperation, Coordination
 - Test- resp. V&V Szenarios
- Build Eco-System for processes, methods and tools for the cost efficient design, analysis and test of safe and secure CPS based on standards, including the whole value chain

Closely related topic in SRA: Cyber-Physical Systems of Systems

- Key features
 - Size and distribution
 - Distributed Control and Mangement
 - (Partial) autonomy of the constituent systems
 - Continuous evolution and dynamic reconfiguration
 - Emergent Behaviours
- Research Challenges
 - Decision structures and system architectures
 - Self-organisation, structure formation, and emerging behaviour in technical systems of systems
 - Real-time monitoring, exception handling, fault detection and mitigation of faults and degradation
 - Adaptation and integration of new components
 - Humans in the loop and collaborative decision making
 - Trust in large distributed systems.

Thank you for your attention